DANIELI

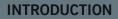
ASHTON HERTRICH GIRALDO Sales engineer, Danieli Centro Metallics

SEAISI 2021, THE ASEAN IRON AND STEEL SUSTAINABILITY FORUM, NOVEMBER 17-18, 2021

GREEN STEEL PRODUCTION THROUGH HYDROGEN-BASED ENERGIRON DRI PROCESS

DANIELI / SINCE 1914 PASSION TO INNOVATE AND PERFORM IN THE METALS INDUSTRY

Copyright © Danieli & C. S.p.A. 2021 - All rights reserved. Unauthorized reproduction, copying, distribution or any other use of the whole or any part of this documentation is strictly prohibited.

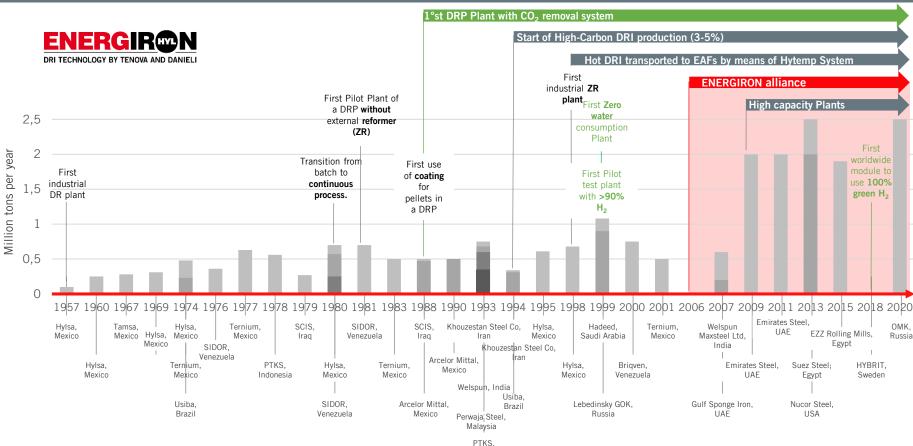

- 1. INTRODUCTION
- 2. THE ENVIRONMENTAL CHALLENGE
- 3. ENERGIRON SELECTIVE CO₂ REMOVAL
- 4. HYDROGEN USE IN DIRECT REDUCTION
- 5. CONCLUSIONS

- 1. INTRODUCTION
- 2. THE ENVIRONMENTAL CHALLENGE
- 3. ENERGIRON SELECTIVE CO₂ REMOVAL
- 4. HYDROGEN USE IN DIRECT REDUCTION
- 5. CONCLUSIONS

INTRODUCTION

DRI TECHNOLOGY BY TENOVA AND DANIELI

DRI TECHNOLOGY BY TENOVA AND DANIELI


The innovative HYL Direct-reduction technology jointly developed by Tenova and Danieli

The most competitive and environmentally clean solution for EAF quality steelmaking

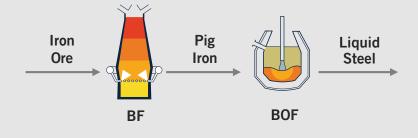
INTRODUCTION

EVOLUTION OF ENERGIRON DIRECT REDUCTION PLANTS TECHNOLOGY FROM 1957 TO 2020

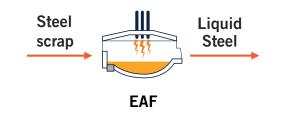
DANIEL

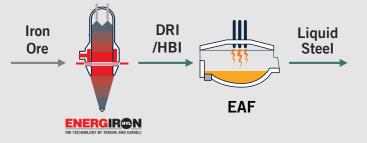
Indonesia

- 1. INTRODUCTION
- 2. THE ENVIRONMENTAL CHALLENGE
- 3. HYDROGEN USE IN DIRECT REDUCTION
- 4. ENERGIRON SELECTIVE CO₂ REMOVAL
- 5. CONCLUSIONS


THE ENVIRONMENTAL CHALLENGE

STEELMAKING ROUTES


BF-BOF ROUTE


SCRAP-EAF ROUTE

> Steel quality depending on residuals in the scrap> Low environmental impact

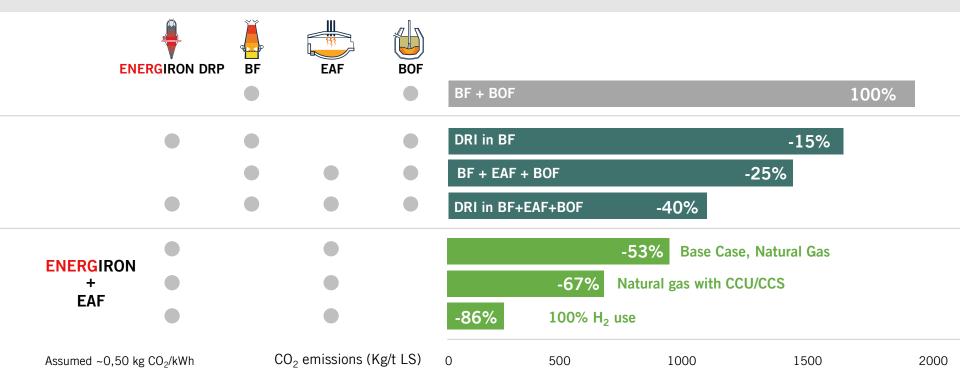
DRP-EAF ROUTE

- > Single module capacity up to 2.5 Mtpa
- > Any quality steel (also high)
- > Reduced environmental impact
- > High flexibility in productivity

The **ENERGIRON + EAF** route allows to avoid, or drastically decrease, the emissions of other pollutants usually generated by coking plants and blast furnaces

POLLUTANT	EMISSION reduction
CO	-99%
NOx	-78%
VOC	-100%
BTX	~ -100%
PCDD/F	~ -100%
SOx	~ -91%
ВАР	-100%
IPA	~ -100%

GREENSTEEL


ENERGIRON + DIGIMELTER Q-ONE

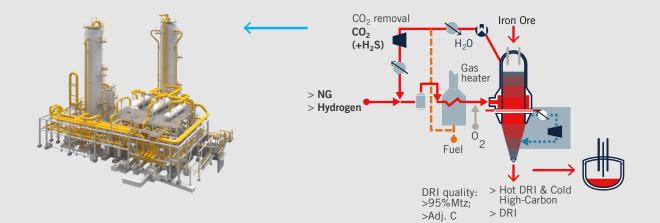
- > BAT
- > Up to -80% CO_2 emissions
- > Up to -50% PM
- > Drastic reduction of NO_X SO_X and other pollutants

LOW-CARBON EMISSION FOOTPRINT IS POSSIBLE

© Danieli & C. S.p.A.

ENERGIRON DRP-EAF grants **-50%** CO_2 emissions with respect to BF+BOF. Using H₂ ENERGIRON DRP allows to achieve **-86%** CO_2 emissions.

- 1. INTRODUCTION
- 2. THE ENVIRONMENTAL CHALLENGE
- 3. ENERGIRON SELECTIVE CO₂ REMOVAL
- 4. HYDROGEN USE IN DIRECT REDUCTION
- 5. CONCLUSIONS


ENERGIRON SELECTIVE CO₂ REMOVAL

ENERGIRON SELECTIVE CO₂ REMOVAL

CARBON IN DIRECT REDUCTION PLANTS

© Danieli & C. S.p.A.

The **ENERGIRON** DR process intrinsically includes a CO_2 absorption system for selective elimination of CO_2

Example:

100%

Total carbon input

45% carbon selected removed

25% carbon in the DRI

30% carbon released into atmosphere

ENERGIRON SELECTIVE CO₂ REMOVAL

SUSTAINIBILITY: CARBON FOOTPRINT

CO₂ EMISSIONS FOR EACH TON OF DRI PRODUCED

SELECTIVE CO₂ EMISSIONS Captured and sold as by-product

NON-SELECTIVE CO₂ EMISSIONS Released to atmosphere

ENERGIRON ZR

256 [kg_{CO2} / t_{DRI}]

159 [kg_{CO2} / t_{DRI}]

NON SELECTIVE 38%

ENERGIRON	

256 [kg_{CO2} / t_{DRI}]

256 [kg_{CO2} / t_{DRI}]

NON SELECTIVE 50%

SELECTIVE 50%

Any other plant without CO₂ removal system

~ 500

0

NON SELECTIVE 100%

COMMERCIALIZATION OF CO₂

CO₂ gases by **ENERGIRON** absorption system are used in different by-products:

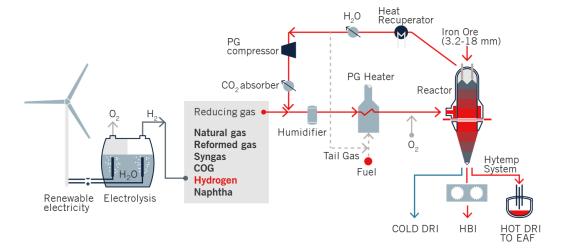
HYL/ENERGIRON DR Plant	Off-taking company	Use
Ternium; Monterrey, Mexico	Praxair	Food and beverages industries
Ternium; Puebla, Mexico	Infra	Beverages industries
PTKS; Indonesia	Janator	Food industry
PSSB; Malaysia	Air Liquid/MOQ	Food industry
JSW Salav; India	Air Liquid	Dry Ice
Emirates Steel; UAE ⁽¹⁾	Masdar/ADNOC	Enhanced Oil Recovery (EOR)
Nucor; USA ⁽²⁾	Denbury Resources Inc.	Nearby piping Network; EOR

Note (1): On going project Note (2): to be executed. Additionally NUCOR has a <u>SULFEROX</u> system that remove Sulfur from CO₂ stream

- 1. INTRODUCTION
- 2. THE ENVIRONMENTAL CHALLENGE
- 3. ENERGIRON SELECTIVE CO2 REMOVAL
- 4. HYDROGEN USE IN DIRECT REDUCTION
- 5. CONCLUSIONS

HYDROGEN USE IN DIRECT REDUCTION

HYDROGEN USE IN DIRECT REDUCTION


USE OF H₂ IN DIRECT REDUCTION PLANTS

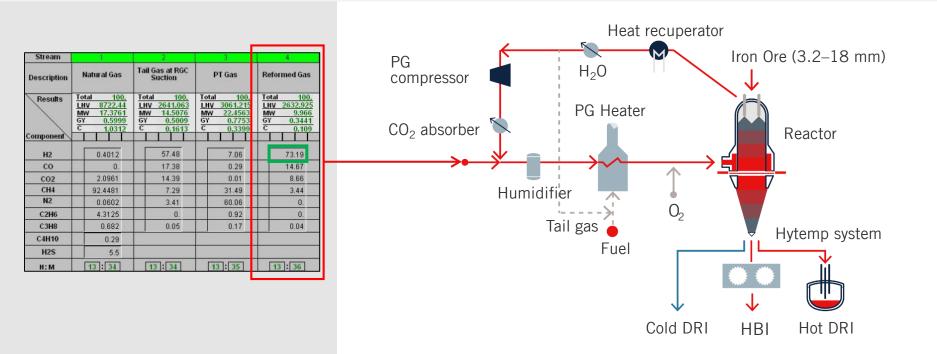
© Danieli & C. S.p.A.

For any reformer, H_2 is produced in different concentration depending on the oxidants ratio:

 $CH_4 + H_2O = 3H_2 + CO$ (3 vol. $H_2 / 1$ vol. CO) $CH_4 + CO_2 = 2H_2 + 2CO$ (2 vol. $H_2 / 2$ vol. CO)

The Energiron technology includes a conventional steam/NG reformer with reformed gas used as reducing agent.

Typical operational characteristics


Parameter related to H ₂	ENERGIRON
H ₂ /CO ratio in reducing gas	4 - 5
H ₂ to reactor (% vol.)	~70%

- > Scheme "natively" suitable for **ANY** reducing gas make-up
- > H₂ make-up **directly** replaces NG to the process
- > **High operating pressure** to better handle the lightest and more diffusible compound in nature

WHY DANIELI

© Danieli & C. S.p.A.

Energiron plants already uses Hydrogen as input material: indeed, **reformed gas contains >70% H**₂

HYDROGEN USE IN DIRECT REDUCTION

ENERGIRON UNMATCHED EXPERIENCE WITH HIGH % OF H_2

Energiron can make use of the continuous advancements of research and development activities:

- > Extensive tests carried at Proprietary Pilot Plant, since 1990's, with \geq 90% H_2
- > Testing activities provided capability results for all type of reducing gases
- > Low and high carbon condition (depending with downstream requirements) have been explored
- $> CO_2$ emissions with different % of H_2 have been defined
- > New pilot plants and testing campaigns are under development, jointly with partners and customers

* Pilot plant in Monterrey

HYDROGEN USE IN DIRECT REDUCTION

DRI ENERGY CONSUMPTION IN ENERGIRON PROCESS

Results of testing activities confirmed that Energiron:

- > Is ready for H₂ use if needed
- Can switch from any reducing gas to H₂ without changing basic scheme configuration (vs. integrated reformer technologies)
- Is designed to run with several gases or a mixture of them (e.g. natural gas and H₂)
- > Testing results are applicable to any new or existing DR plant installation.

HYDROGEN USE IN DIRECT REDUCTION

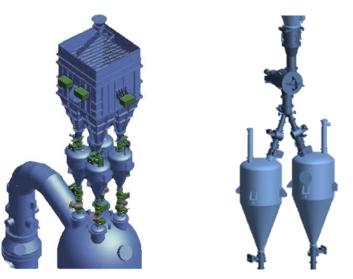
ASSURING PROPER SAFETY

> Reactor top and bottom mechanical lockhoppers

> Solids cutoff and gas sealing valves with double protection for reactor charging and discharging

> Zero leakage of process gas

> Dynamic gas seals or bubblers are avoided

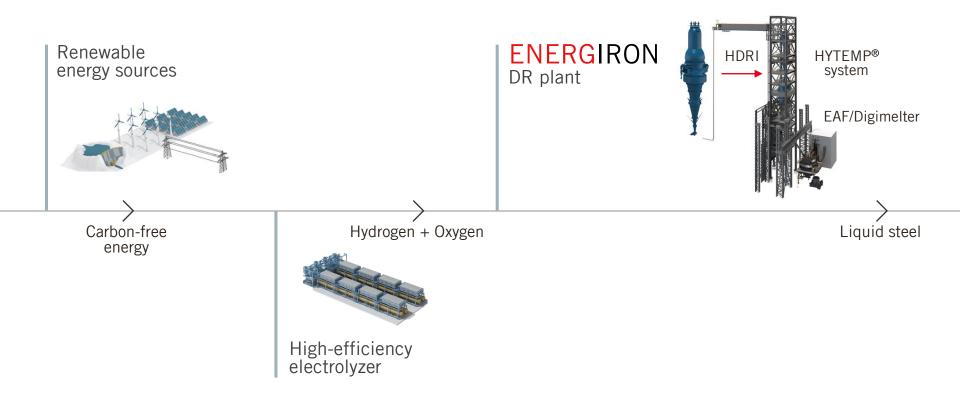

PERFECT INERT GAS

High purity nitrogen is used instead of compressed flue gases for sealing reactor valves, equipment purging and blanketing

ADVANTAGES OF NITROGEN

> Uninterrupted supply independently of DRP operation

- > Fixed purity and no moisture
- > No additional equipment in DRP
- > Low maintanence costs

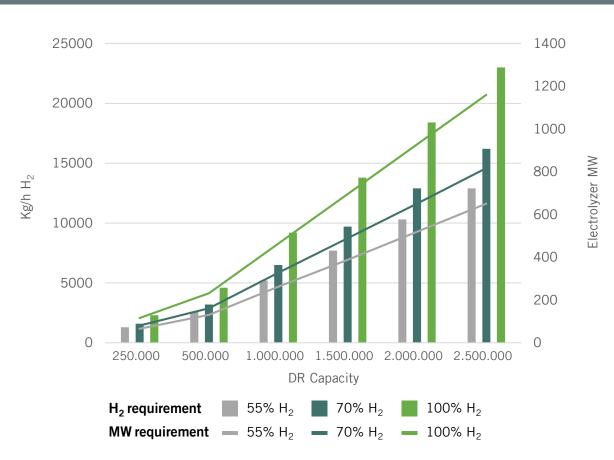


Iron ore charging system

DRI discharging system

HYDROGEN USE IN DIRECT REDUCTION CARBON DIRECT AVOIDANCE (CDA)

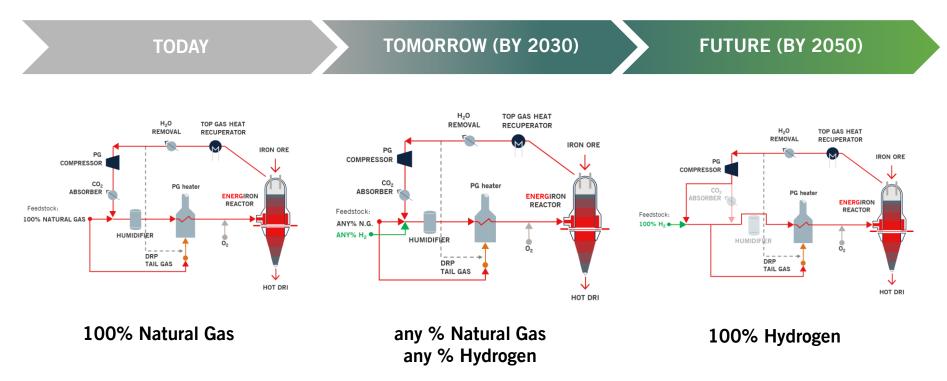
HYDROGEN USE IN DIRECT REDUCTION


H₂ AND ELECTRICITY REQUIREMENT

© Danieli & C. S.p.A.

ENERGIRON can use different blends of hydrogen from 0 up to 100% undependably from its capacity.

For a **2M ton per year** DR plant the H₂ needed for a full H₂ DR plant its nearly: **18.400 kg/h H₂**


To produce 18400 kg/h of Hydrogen with an alkaline electrolyzers we need an installed capacity of nearly: **928 MW**

NG TRANSITION UP TO 100% H₂

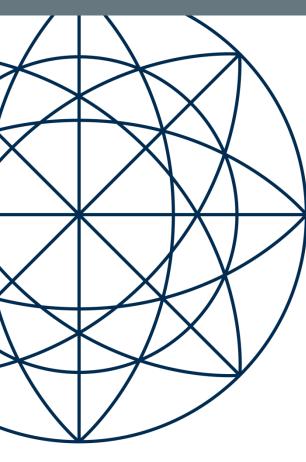
SAME SCHEME FOR PRESENT, NEAR AND FAR FUTURE

HYDROGEN USE IN DIRECT REDUCTION

HYDROGEN-BASED INITIATIVES FOR STEELMAKING

*Source: Salzgitter AG

*Source: SAAB



- 1. INTRODUCTION
- 2. THE ENVIRONMENTAL CHALLENGE
- 3. ENERGIRON SELECTIVE CO₂ REMOVAL
- 4. HYDROGEN USE IN DIRECT REDUCTION
- 5. CONCLUSIONS

CONCLUSIONS

INDEX

INNOVATIVE TECHNOLOGY LEADING FOR EFFICIENCY

Less iron ore and energy consumption

TOP QUALITY PRODUCTS

Adjustable metallization and carbon content

FLEXIBLE AND FRIENDLY

Wide variety of raw materials inputs Smart automated control system

ENVIRONMENTAL SUSTAINABILITY

CCU/CCS-ready technology: -60% CO₂ emissions Hydrogen-ready technology: -100% CO₂ emissions

DANIELI

ASHTON HERTRICH GIRALDO Sales engineer, Danieli Centro Metallics

SEAISI 2021, THE ASEAN IRON AND STEEL SUSTAINABILITY FORUM, NOVEMBER 17-18, 2021

a.hertrichgiraldo@danieli.com

GREEN STEEL PRODUCTION THROUGH HYDROGEN-BASED ENERGIRON DRI PROCESS

DANIELI / SINCE 1914 PASSION TO INNOVATE AND PERFORM IN THE METALS INDUSTRY

Copyright © Danieli & C. S.p.A. 2021 - All rights reserved. Unauthorized reproduction, copying, distribution or any other use of the whole or any part of this documentation is strictly prohibited.